Alzheimer's, atherosclerosis, and aggregates: a role for bacterial degradation
de Grey AD.
Methuselah Foundation,
Cambridge, United Kingdom.
Nutr Rev. 2007 Dec;65(12 Pt 2):S221-7.


Several of the most prevalent and severe age-related diseases, notably Alzheimer's disease and atherosclerosis, feature the accumulation of non-degradable aggregates within the lysosomes of disease-affected cells. At an early point in disease progression, the breakdown of lysosomal contents by the resident catabolic enzymes stops working properly. A return of lysosomal enzymatic activity to pre-disease levels may restore aggregate elimination. In this review, a method of bioremediation-derived lysosomal enzyme enhancement is proposed, featuring the cellular introduction of microbial-isolated enzymes, or xenoenzymes. The benefits and challenges of using xenoenzymes to break down aggregates are discussed. As the size of our elderly population grows, the incidence of age-related diseases will increase, necessitating the exploration of radical, but potentially powerful, therapeutic strategies.

Caloric restriction
Intermittent fasting
Antiaging medicine?
Antiaging treatments
Mitochondrial enzymes
Antagonistic pleiotropy
Caloric restriction mimetics
Cryonics/negligible senescence
Lifespan-extending interventions
CR/age-related oxidative damage
Does resveratrol enhance longevity?
Resveratrol and vertebrate lifespan (PDF)

and further reading

Future Opioids
BLTC Research
Utopian Surgery?
The Abolitionist Project
The Hedonistic Imperative
The Reproductive Revolution
Critique of Huxley's Brave New World

The Good Drug Guide
The Good Drug Guide

The Responsible Parent's Guide
To Healthy Mood Boosters For All The Family